更多>>精华博文推荐
更多>>人气最旺专家

赵士暕

领域:慧聪网

介绍:所著文章入宋不书年号,二也。...

安达忍

领域:齐鲁热线

介绍:一、人口自然增长的时空分布不断增长出生率知识回顾夯基固源一、人口自然增长的时空分布【提示】人口增长中的“增长”仅指人口数量的变化,而不一定是数量的增加,也可以是零增长或者负增长。凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂

乐橙旗舰厅网站
本站新公告凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂
arc | 2018-12-19 | 阅读(217) | 评论(708)
望大家配合,以营造出一个优秀、和谐的班集体!清洁区负责人整改措施我的职位学习小组组长我的职责1、全面负责本小组的各项工作,督促本组成员共同搞好学习,促进本小组成员共同进步,营造积极的组内互动学习氛围;2、以身作责,多关心帮助本组成员;3、负责如实记载本组的操行成绩和家校联系册,不偏不倚,以实为据;4、负责收齐本组各科作业并按时上交科代表;我的总结1、小组内成员一些成绩跟不上;2、每天积累本上的字迹不工整;3、背书情况不理想;4、本组学习氛围不积极;5、本组的一些同学容易闹矛盾;我的措施1、在小组举行互帮互助计划,让学习成绩好的和不好的互相帮助;2、一次字迹不工整扣操行分05分,并且抄两遍;3、一次书未背,每扣1分,并交至班主任处处置;4、多增加一些外活动,是本组气氛活跃起;5、多对组员进行思想辅导,如果不听,每次扣1分;6、积极召开小组会议,不定期统计小组成员的成绩。【阅读全文】
凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂
fb2 | 2018-12-19 | 阅读(498) | 评论(253)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
pqg | 2018-12-19 | 阅读(964) | 评论(263)
为防范这些问题发生,政府应采取的措施是:①改进互联网安全技术②完善金融监管政策法规体系③限制高风险的金融产品④引导和规范行业自律组织的发展A.①②B.①③C.②④D.③④c(2015全国II卷)年8月,某市政府清理出涉企权力5157项,废止了其中3301项,对停留的涉企权力向社会全部公开,并表示严肃查处涉企审批、收费中的违法违纪问题,这一做法的预期效果是:①政府对企业的监督与管理更有效率②“看得见的手”受到有力的制约③市场机制能更好的发挥资源配置作用④企业的市场竞争力得到增强A.①②B.①③C.②③D.③④(2015高考江苏卷)7.我国央行白2015年2月5日起全面下调金融机构人民币存款准备金率个百分点。【阅读全文】
wti | 2018-12-19 | 阅读(234) | 评论(332)
但在任公看来,医师并非有意为之,医疗【阅读全文】
wm0 | 2018-12-19 | 阅读(519) | 评论(93)
最近,俄罗斯收到了一份来自乌克兰“全面战争”的警告。【阅读全文】
1wi | 2018-12-18 | 阅读(372) | 评论(171)
国务院及省级人民政府能够制定行政法规,但行政法规、地方性法规不能等同于法律。【阅读全文】
g9b | 2018-12-18 | 阅读(921) | 评论(40)
感谢所有评委老师对陈深这个角色的肯定。【阅读全文】
h0c | 2018-12-18 | 阅读(57) | 评论(372)
客人也非常满意。【阅读全文】
凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂,凯发真人在线娱乐手机课堂
umy | 2018-12-18 | 阅读(93) | 评论(281)
现代光电特征标识系统对新型红外光源需求迫切,配备于地面、船舶和飞机上的光电特征标识装置性能的优劣,与任务[1]的成败有着直接密切的联系。【阅读全文】
9bx | 2018-12-17 | 阅读(884) | 评论(420)
 最大值与最小值学习目标重点难点1.知道函数的最大值与最小值的概念.2.能够区分函数的极值与最值.3.会用导数求闭区间上不超过三次的多项式函数的最大值、最小值.重点:函数在闭区间上的最值的求解.难点:与函数最值有关的参数问题.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有______________,则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值________.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有____________,则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值________.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的________;(2)将第(1)步中求得的________与______,______比较,得到f(x)在区间[a,b]上的最大值与最小值.预习交流1做一做:函数y=x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))的最大值是______.预习交流2做一做:函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.预习交流3(1)函数的极值与最值有何区别与联系?(2)如果函数f(x)在开区间(a,b)上的图象是连续不断的曲线,那么它在(a,b)上是否一定有最值?若f(x)在闭区间[a,b]上的图象不连续,那么它在[a,b]上是否一定有最值?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)f(x)≤f(x0) 惟一 (2)f(x)≥f(x0) 惟一2.(1)极值 (2)极值 f(a) f(b)预习交流1:提示:∵y′=1-cosx≥0,∴y=x-sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))上是增函数,∴ymax=π.预习交流2:提示:∵f′(x)=3x2-3a=3(x2-af(x)在(0,1)内有最小值,∴方程x2-a=0有一根在(0,1)内,即x=eq\r(a)在(0,1)内,∴0<eq\r(a)<1,0<a<1.预习交流3:提示:(1)①函数的极值是表示函数在某一点附近的变化情况,是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较,具有绝对性.②函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性;而极大值和极小值可能多于一个,也可能没有,例如:常函数就没有极大值,也没有极小值.③极值只能在函数的定义域内部取得,而最值可以在区间的端点取得.有极值的不一定有最值,有最值的不一定有极值,极值有可能成为最值,最值只要不在端点处则一定是极值.(2)一般地,若函数f(x)的图象是一条连续不断的曲线,那么f(x)在闭区间[a,b]上必有最大值和最小值.这里给定的区间必须是闭区间,如果是开区间,那么尽管函数是连续函数,那么它也不一定有最大值和最小值.一、求函数在闭区间上的最值求下列函数的最值:(1)f(x)=-x3+3x,x∈[-eq\r(3),eq\r(3)];(2)f(x)=sin2x-x,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2))).思路分析:按照求函数最值的方法与步骤,通过列表进行计算与求解.1.函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值分别是__________.2.求函数y=5-36x+3x2+4x3在区间[-2,2]上的最大值与最小值.1.求函数在闭区间上的最值时,一般是先找出该区间上使导数为零的点,无需判断出是极大值还是极小值,只需将这些点对应的函数值与端点处的函数值比较,其中最大的是最大值,最小的是最小值.2.求函数在闭区间上的最值时,需要对各个极值与端点函数值进行比较,有时需要作差、作商,有时还要善于估算,甚至有时需要进行分类讨论.二、与最值有关的参数问题的求解已知当a>0时,函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.思路分析:先求出函数f(x)在[-1,2]上的极值点,然后与两个端点的函数值进行比较,建立关于a,b的方程组,从而求出a,b的值.若函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,求它在该区间上的最小值.【阅读全文】
jq8 | 2018-12-17 | 阅读(636) | 评论(453)
②注射活菌③④S型注射加热杀死的S型细菌+R型活菌休内有R、S型活菌注射加热杀死的S型细菌RS(二)艾弗里实验(体内转化实验)S型活菌蛋白质多糖DNA脂类RNA分别与R型活细菌混合培养R型菌R型菌R型菌R型菌R型菌S型菌DNA酶DNA才是使R型细菌产生稳定遗传变化的物质,即DNA才是遗传物质,蛋白质等其它有机物不是遗传物质。【阅读全文】
k8t | 2018-12-17 | 阅读(672) | 评论(450)
由于用户账户关联用户信用信息,仅当有法律明文规定、司法裁定或经阿里巴巴同意,并符合阿里巴巴中国站规则规定的账户转让流程的情况下,用户可进行账户的转让。【阅读全文】
vh8 | 2018-12-17 | 阅读(175) | 评论(552)
有了自信,你还要有非常强的抗打击能力,我很难想象,一个连向自己喜欢的人表白都不敢的人,怎么做的好销售?如果仅仅被几个人的拒绝你就失望伤心,你怎么承受每天被无数顾客拒绝的感受?有人说爱情的拒绝和销售的拒绝能一样吗!其实,这两者虽然有区别,但也是有共同的,当你了解被拒绝是很正常的一事的时候,你就不会那么难受了。【阅读全文】
jar | 2018-12-16 | 阅读(966) | 评论(735)
试分析千泉的成因。【阅读全文】
7xo | 2018-12-16 | 阅读(645) | 评论(3)
PAGE第2课时 等比数列前n项和的性质及应用课后篇巩固探究A组1.在各项都为正数的等比数列{an}中,首项a1=3,前3项和为21,则a3+a4+a5等于(  )                解析由S3=a1(1+q+q2)=21,且a1=3,得q+q2-6=0.因为q0,所以q=2.故a3+a4+a5=q2(a1+a2+a3)=22·S3=84.答案C2.已知数列{an}的前n项和Sn=an-1(a是不为零且不等于1的常数),则数列{an}(  )A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不是等差数列,也不是等比数列解析因为Sn=an-1符合Sn=-Aqn+A的形式,且a≠0,a≠1,所以数列{an}一定是等比数列.答案B3.已知{an}是等比数列,a1=1,a4=,则a1a2+a2a3+…+anan+1等于((1-4-n)(1-2-n)C.(1-4-n)D.(1-2-n)解析设公比为q,∵a4a1=q3=∵a1=1,∴anan+1=1×12n-1×1×12n=故a1a2+a2a3+a3a4+…+an=2-1+2-3+2-5+…+21-2n=1=(1-4-n).答案C4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.意思是:一座七层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯(  )盏盏盏盏解析设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a(1-27答案B5.已知一个等比数列共有3m项,若前2m项之和为15,后解析由已知S2m=15,S3m-Sm=60,又(S2m-Sm)2=Sm(S3m-S2m)=Sm(Sm+60-S2m),解得Sm=3,所以S3m答案A6.在各项均为正数的等比数列{an}中,a1=2,a2,a4+2,a5成等差数列,Sn是数列{an}的前n项和,则S10-S4=   .解析依题意有2(a4+2)=a2+a5,设公比为q,则有2(2q3+2)=2q+2q4,解得q=2.于是S10-S4=2(1-答案20167.已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2018=.解析∵an+1·an=2n(n∈N*),a1=1,∴a2=2,a3=2.又an+2·an+1=2n+1,∴an+2∴数列{an}的奇数项与偶数项分别成等比数列,公比为2,首项分别为1,2.∴S2018=(a1+a3+…+a2017)+(a2+a4+…+a2018)=2=3·21009-3.答案3·21009-38.已知一件家用电器的现价是2000元,如果实行分期付款,一年后还清,购买后一个月第一次付款,以后每月付款一次,每次付款数相同,共付12次,月利率为%,并按复利计算,那么每期应付款   元.(参考数据:≈,≈,≈,≈)解析设每期应付款x元,第n期付款后欠款An元,则A1=2000(1+)-x=2000×,A2=(2000×)×=2000×,……A12=2000×(++…+1)x,因为A12=0,所以2000×(++…+1)x=0,解得x=2即每期应付款175元.答案1759.在等差数列{an}中,a2+a7=-23,a3+a8=-29.(1)求数列{an}的通项公式;(2)设数列{an+bn}是首项为1,公比为|a2|的等比数列,求{bn}的前n项和Sn.解(1)设等差数列{an}的公差为d,依题意得a3+a8-(a2+a7)=2d=-6,从而d=-3.所以a2+a7=2a1+7d=-23,解得a1=-1所以数列{an}的通项公式为an=-3n+2.(2)由(1)得a2=-4,所以|a2|=4.而数列{an+bn}是首项为1,公比为4的等比数列.所以an+bn=4n-1,即-3n+2+bn=4n-1,所以bn=3n-2+4n-1,于是Sn=[1+4+7+…+(3n-2)]+(1+4+42+…+4n-1)=n(10.导学号04994050已【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2018-12-19

w66利来娱乐公司 利来娱乐网址 利来娱乐 利来w66
利来国际娱乐官方 利来国际老牌 wwww66com利来 利来国际w66手机版 w66.cum
利来国际娱乐 利来国际最老牌 利来国际旗舰厅 利来国际手机版 利来国际官网
利来国际游戏平台 w66.com利来国际 利来国际w66客服 利来娱乐网 利来ag旗舰厅手机版
翁牛特旗| 镇远县| 辽中县| 双桥区| 遵义市| 广州市| 历史| 湖南省| 白沙| 焉耆| 福建省| 太保市| 区。| 思南县| 孟州市| 文成县| 永城市| 鄄城县| 邯郸市| 甘洛县| 武义县| 河南省| 壤塘县| 四平市| 仁怀市| 阿图什市| 仁怀市| 绥宁县| 美姑县| 新丰县| 新民市| 晋宁县| 云南省| 余姚市| 玛曲县| 恩平市| 日喀则市| 揭阳市| 阜城县| 福清市| 平顶山市| http:// http:// http:// http:// http:// http://